Advances in Mass Spectrometry for Membrane Protein Pharmacology

This manuscript (permalink) was automatically generated from dschust-r/review_ms_mem_prot@d981bfa on May 28, 2025.

Authors

✉ — Correspondence possible via GitHub Issues or email to Dina Schuster <dschust@stanford.edu>.

Abstract

Membrane proteins are important targets for pharmacological research, due to their involvement in various cellular processes, ranging from signal transduction to transport, and cellular communication. While they make up roughly 30% of the human proteome and are the target of more than half of all approved drug products, their hydrophobicity and low abundance pose significant challenges for drug discovery and development. Mass spectrometry has emerged as a powerful tool for studying membrane protein structure, dynamics, regulation, as well as their interaction with proteins, small molecules, and lipids. In this review, we summarize recent findings and methodological advances that facilitate the study of cell surface organization, the discovery of druggable membrane proteins, and the identification of binding sites.

1. Novel mass spectrometric methods for the identification of drug targets and binding sites

[1,2,3,4,5,6,7,8,9,10]

Accessibility approaches

[4,5,11,12,13,14,15]

Thermal proteome profiling

[3,16]

Proximity-based approaches and chemical cross-linking

[17,18,19,20,21,22,23,24]

Native and intact mass spectrometry of membrane proteins

[[25]; [26]; [27]; [28]; [29]; [30]; [31]; [32]; [33]; [34]; DOI; [35]; [36]]

2. Selective probing of membrane proteins with chemoproteomics

[37,38,39,40,41,42]

3. Mass spectrometry reveals the cell surface organization

[2,3,19,20,25,38,43,44,45,46]

4. Insights into G protein-coupled receptors

[3,7,25,28,30,31,33,34,47]

5. Remaining challenges and outlook

[8,34,48,49,50]

References

1.
Capture of the Mouse Organ Membrane Proteome Specificity in Peptidisc Libraries
Frank Antony, Zora Brough, Zhiyu Zhao, Franck Duong van Hoa
Journal of Proteome Research (2024-01-17) https://doi.org/g5w3hs
2.
A Peptidisc-Based Survey of the Plasma Membrane Proteome of a Mammalian Cell
Zhiyu Zhao, Arshdeep Khurana, Frank Antony, John W Young, Keeley G Hewton, Zora Brough, Tianshuang Zhong, Seth J Parker, Franck Duong van Hoa
Molecular &amp; Cellular Proteomics (2023-08) https://doi.org/g9ks7s
3.
Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane
Mathias Kalxdorf, Ina Günthner, Isabelle Becher, Nils Kurzawa, Sascha Knecht, Mikhail M Savitski, HChristian Eberl, Marcus Bantscheff
Nature Methods (2021-01) https://doi.org/ghswc8
4.
Target Deconvolution by Limited Proteolysis Coupled to Mass Spectrometry
Viviane Reber, Matthias Gstaiger
Methods in Molecular Biology (2023) https://doi.org/g9ks7q
5.
High-throughput peptide-centric local stability assay extends protein-ligand identification to membrane proteins, tissues, and bacteria
Kejia Li, Clement M Potel, Isabelle Becher, Nico Hüttmann, Martin Garrido-Rodriguez, Jennifer Schwarz, Mikhail M Savitski
Cold Spring Harbor Laboratory (2025-04-29) https://doi.org/g9ks7v
6.
Effects of theophylline on ADCY5 activation—From cellular studies to improved therapeutic options for ADCY5-related dyskinesia patients
Dirk Tänzler, Marc Kipping, Marcell Lederer, Wiebke F Günther, Christian Arlt, Stefan Hüttelmaier, Andreas Merkenschlager, Andrea Sinz
PLOS ONE (2023-03-03) https://doi.org/grv9ht
7.
Phosphorylation Sites of the Gastric Inhibitory Polypeptide Receptor (GIPR) Revealed by Trapped-Ion-Mobility Spectrometry Coupled to Time-of-Flight Mass Spectrometry (TIMS-TOF MS)
Kyle A Brown, Rylie K Morris, Samantha J Eckhardt, Ying Ge, Samuel H Gellman
Journal of the American Chemical Society (2023-12-13) https://doi.org/g9ks7t
DOI: 10.1021/jacs.3c09078 · PMID: 38091482 · PMCID: PMC10842860
8.
Integrative structural modeling of macromolecular complexes using Assembline
Vasileios Rantos, Kai Karius, Jan Kosinski
Nature Protocols (2021-11-29) https://doi.org/gq586q
9.
Simple But Efficacious Enrichment of Integral Membrane Proteins and Their Interactions for In-Depth Membrane Proteomics
Pornparn Kongpracha, Pattama Wiriyasermkul, Noriyoshi Isozumi, Satomi Moriyama, Yoshikatsu Kanai, Shushi Nagamori
Molecular &amp; Cellular Proteomics (2022-05) https://doi.org/g9ks7r
10.
Advancing Kir4.2 Channel Ligand Identification through Collision-Induced Affinity Selection Mass Spectrometry
Yushu Gu, Miaomiao Liu, Linlin Ma, Ronald J Quinn
ACS Chemical Biology (2024-03-07) https://doi.org/g9k63j
11.
Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases
Ved Mehta, Basavraj Khanppnavar, Dina Schuster, Ilayda Kantarci, Irene Vercellino, Angela Kosturanova, Tarun Iype, Sasa Stefanic, Paola Picotti, Volodymyr M Korkhov
eLife (2022-08-18) https://doi.org/gsx57q
DOI: 10.7554/elife.77032 · PMID: 35980026 · PMCID: PMC9433096
12.
Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel
Diane C A Barret, Dina Schuster, Matthew J Rodrigues, Alexander Leitner, Paola Picotti, Gebhard F X Schertler, U Benjamin Kaupp, Volodymyr M Korkhov, Jacopo Marino
Proceedings of the National Academy of Sciences (2023-04-03) https://doi.org/gs27gg
13.
Regulatory sites of CaM-sensitive adenylyl cyclase AC8 revealed by cryo-EM and structural proteomics
Basavraj Khanppnavar, Dina Schuster, Pia Lavriha, Federico Uliana, Merve Özel, Ved Mehta, Alexander Leitner, Paola Picotti, Volodymyr M Korkhov
EMBO Reports (2024-02-13) https://doi.org/g9kwfz
14.
A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands
Kejia Li, Shijie Chen, Keyun Wang, Yan Wang, Lianji Xue, Yuying Ye, Zheng Fang, Jiawen Lyu, Haiyang Zhu, Yanan Li, … Mingliang Ye
Nature Methods (2024-12-10) https://doi.org/g84jvq
15.
In‐Cell Fast Photochemical Oxidation Interrogates the Native Structure of Integral Membrane Proteins
Jie Sun, Mierxiati Saimi, Don Rempel, Qing Cao, Mengqi Chai, Weikai Li, Michael L Gross
Angewandte Chemie International Edition (2025-03-09) https://doi.org/g9kwfm
16.
Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin
Marjorie A Carnero Corrales, Sarah Zinken, Georgios Konstantinidis, Muhammad Rafehi, Aliaa Abdelrahman, Yao-Wen Wu, Petra Janning, Christa E Müller, Luca Laraia, Herbert Waldmann
Cell Chemical Biology (2021-12) https://doi.org/gmz72w
17.
Cross-Linking Mass Spectrometry to Capture Protein Network Dynamics of Cell Membranome
Lucia Santorelli, Michele Costanzo, Sara Petrosino, Michele Santoro, Marianna Caterino, Margherita Ruoppolo, Paolo Grumati
Methods in Molecular Biology (2024-12-24) https://doi.org/g9kwfn
18.
Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies
Ying Zhu, Kerem Can Akkaya, Julia Ruta, Nanako Yokoyama, Cong Wang, Max Ruwolt, Diogo Borges Lima, Martin Lehmann, Fan Liu
Nature Communications (2024-04-17) https://doi.org/g9kwfv
19.
Glycan–protein cross-linking mass spectrometry reveals sialic acid-mediated protein networks on cell surfaces
Yixuan Xie, Siyu Chen, Qiongyu Li, Ying Sheng, Michael Russelle Alvarez, Joeriggo Reyes, Gege Xu, Kemal Solakyildirim, Carlito B Lebrilla
Chemical Science (2021) https://doi.org/g9kwf3
DOI: 10.1039/d1sc00814e · PMID: 34257876 · PMCID: PMC8246274
20.
In situ cell-type-specific cell-surface proteomic profiling in mice
SAndrew Shuster, Jiefu Li, URee Chon, Miley C Sinantha-Hu, David J Luginbuhl, Namrata D Udeshi, Dominique Kiki Carey, Yukari H Takeo, Qijing Xie, Chuanyun Xu, … Liqun Luo
Neuron (2022-12) https://doi.org/gq3hq5
21.
Profiling the proximal proteome of the activated μ-opioid receptor
Benjamin J Polacco, Braden T Lobingier, Emily E Blythe, Nohely Abreu, Prachi Khare, Matthew K Howard, Alberto J Gonzalez-Hernandez, Jiewei Xu, Qiongyu Li, Brandon Novy, … Ruth Hüttenhain
Nature Chemical Biology (2024-03-25) https://doi.org/gtqbbp
22.
Chromatographic Phospholipid Trapping for Automated H/D Exchange Mass Spectrometry of Membrane Protein–Lipid Assemblies
Dietmar Hammerschmid, Valeria Calvaresi, Chloe Bailey, Benjamin Russell Lewis, Argyris Politis, Michael Morris, Laetitia Denbigh, Malcolm Anderson, Eamonn Reading
Analytical Chemistry (2023-01-27) https://doi.org/g9kwms
23.
Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain
Johannes F Hevler, Riccardo Zenezeni Chiozzi, Alfredo Cabrera-Orefice, Ulrich Brandt, Susanne Arnold, Albert JR Heck
Proceedings of the National Academy of Sciences (2021-09-21) https://doi.org/g9kwf5
24.
A proximity proteomics pipeline with improved reproducibility and throughput
Xiaofang Zhong, Qiongyu Li, Benjamin J Polacco, Trupti Patil, Aaron Marley, Helene Foussard, Prachi Khare, Rasika Vartak, Jiewei Xu, Jeffrey F DiBerto, … Ruth Hüttenhain
Molecular Systems Biology (2024-07-01) https://doi.org/g9kwf2
25.
Capturing a rhodopsin receptor signalling cascade across a native membrane
Siyun Chen, Tamar Getter, David Salom, Di Wu, Daniel Quetschlich, Dror S Chorev, Krzysztof Palczewski, Carol V Robinson
Nature (2022-04-06) https://doi.org/g9kwfw
26.
Native Mass Spectrometry of Membrane Protein–Lipid Interactions in Different Detergent Environments
Smriti Kumar, Lauren Stover, Lie Wang, Hanieh Bahramimoghaddam, Ming Zhou, David H Russell, Arthur Laganowsky
Analytical Chemistry (2024-10-12) https://doi.org/g9kwfr
27.
Native mass spectrometry of proteoliposomes containing integral and peripheral membrane proteins
Yun Zhu, Sangho D Yun, Tianqi Zhang, Jing-Yuan Chang, Lauren Stover, Arthur Laganowsky
Chemical Science (2023) https://doi.org/g9kwf4
DOI: 10.1039/d3sc04938h · PMID: 38098719 · PMCID: PMC10718073
28.
Capillary Zone Electrophoresis-Mass Spectrometry of Intact G Protein-Coupled Receptors Enables Proteoform Profiling
Ashley N Ives, Kevin Jooß, Rafael D Melani, Ryan T Fellers, John Janetzko, Neil L Kelleher
Analytical Chemistry (2025-03-27) https://doi.org/g9kwfs
29.
Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of Mouse Brain Integral Membrane Proteins
Qianjie Wang, Tian Xu, Fei Fang, Qianyi Wang, Peter Lundquist, Liangliang Sun
Analytical Chemistry (2023-08-18) https://doi.org/g9kwfq
30.
The Effects of Sodium Ions on Ligand Binding and Conformational States of G Protein-Coupled Receptors—Insights from Mass Spectrometry
Mark T Agasid, Lars Sørensen, Leonhard H Urner, Jun Yan, Carol V Robinson
Journal of the American Chemical Society (2021-03-12) https://doi.org/gjf7x5
DOI: 10.1021/jacs.0c11837 · PMID: 33711230 · PMCID: PMC7995251
31.
Evaluation of Drug Responses to Human β<sub>2</sub>AR Using Native Mass Spectrometry
Michiko Tajiri, Shunsuke Imai, Tsuyoshi Konuma, Keiko Shimamoto, Ichio Shimada, Satoko Akashi
ACS Omega (2023-06-28) https://doi.org/g9kwft
32.
Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids
Tianqi Zhang, Jixing Lyu, Bowei Yang, Sangho D Yun, Elena Scott, Minglei Zhao, Arthur Laganowsky
Nature Communications (2024-07-15) https://doi.org/gt4mfb
33.
Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor
Hsin-Yung Yen, Idlir Liko, Wanling Song, Parth Kapoor, Fernando Almeida, Joanna Toporowska, Karolina Gherbi, Jonathan TS Hopper, Steven J Charlton, Argyris Politis, … Carol V Robinson
Nature Chemistry (2022-11-10) https://doi.org/jmm7
34.
Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination
Donggyun Kim, Weijing Liu, Rosa Viner, Vadim Cherezov
Structure (2024-12) https://doi.org/g9kwfp
35.
Combining native mass spectrometry and lipidomics to uncover specific membrane protein–lipid interactions from natural lipid sources
Yun Zhu, Melanie T Odenkirk, Pei Qiao, Tianqi Zhang, Samantha Schrecke, Ming Zhou, Michael T Marty, Erin S Baker, Arthur Laganowsky
Chemical Science (2023) https://doi.org/g9k3j5
DOI: 10.1039/d3sc01482g · PMID: 37593000 · PMCID: PMC10430552
36.
Alanine Scanning to Define Membrane Protein–Lipid Interaction Sites Using Native Mass Spectrometry
Hiruni S Jayasekera, Farhana Afrin Mohona, Madison J De Jesus, Katherine M Miller, Michael T Marty
Biochemistry (2025-03-06) https://doi.org/g9k3j4
37.
Lipid- and protein-directed photosensitizer proximity labeling captures the cholesterol interactome
Andrew P Becker, Elijah Biletch, John Paul Kennelly, Ashley R Julio, Miranda Villaneuva, Rohith T Nagari, Daniel W Turner, Nikolas R Burton, Tomoyuki Fukuta, Liujuan Cui, … Keriann M Backus
Cold Spring Harbor Laboratory (2024-08-20) https://doi.org/g9kwhm
38.
A chemical proteomics approach for global mapping of functional lysines on cell surface of living cell
Ting Wang, Shiyun Ma, Guanghui Ji, Guoli Wang, Yang Liu, Lei Zhang, Ying Zhang, Haojie Lu
Nature Communications (2024-04-08) https://doi.org/g9kwhj
39.
Probing Monotopic Phosphoglycosyl Transferases from Complex Cellular Milieu
Alyssa J Anderson, Leah M Seebald, Christine A Arbour, Barbara Imperiali
ACS Chemical Biology (2022-11-08) https://doi.org/g6g3mb
40.
Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Differences in Protein Binding of EGFR-Directed Drugs
Wouter van Bergen, Kristina Žuna, Jan Fiala, Elena E Pohl, Albert JR Heck, Marc P Baggelaar
ACS Chemical Biology (2024-07-25) https://doi.org/g9kwhh
41.
Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics
Tianyang Yan, Lisa M Boatner, Liujuan Cui, Peter J Tontonoz, Keriann M Backus
JACS Au (2023-12-13) https://doi.org/g5c55k
42.
A proteome-wide map of 20(S)-hydroxycholesterol interactors in cell membranes
Yu-Shiuan Cheng, Tianyi Zhang, Xiang Ma, Sarida Pratuangtham, Grace C Zhang, Alexander A Ondrus, Amirhossein Mafi, Brett Lomenick, Jeffrey J Jones, Alison E Ondrus
Nature Chemical Biology (2021-11-19) https://doi.org/g9kwhk
43.
The solute carrier superfamily interactome
Fabian Frommelt, Rene Ladurner, Ulrich Goldmann, Gernot Wolf, Alvaro Ingles-Prieto, Eva Lineiro-Retes, Zuzana Gelová, Ann-Katrin Hopp, Eirini Christodoulaki, Shao Thing Teoh, … Giulio Superti-Furga
Molecular Systems Biology (2025-05-12) https://doi.org/g9k6t3
44.
Cell Surface Engineering Enables Surfaceome Profiling
Zak Vilen, Abigail E Reeves, Timothy R O’Leary, Eugene Joeh, Naomi Kamasawa, Mia L Huang
ACS Chemical Biology (2022-04-20) https://doi.org/g9kwmw
45.
Quantitative Glycan-Protein Cross-Linking Mass Spectrometry Using Enrichable Linkers Reveals Extensive Glycan-Mediated Protein Interaction Networks
Siyu Chen, Yixuan Xie, Michael Russelle Alvarez, Ying Sheng, Yasmine Bouchibti, Vincent Chang, Carlito B Lebrilla
Analytical Chemistry (2025-01-13) https://doi.org/g9kwmv
46.
Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells
Zhi Lin, Kaitlin Schaefer, Irene Lui, Zi Yao, Andrea Fossati, Danielle L Swaney, Ajikarunia Palar, Andrej Sali, James A Wells
Science (2024-07-19) https://doi.org/g8twn2
47.
Structural Mass Spectrometry Captures Residue-Resolved Comprehensive Conformational Rearrangements of a G Protein-Coupled Receptor
Hongyue Liu, Pengfei Yan, Zhaoyu Zhang, Hongbo Han, Qingtong Zhou, Jie Zheng, Jian Zhang, Fei Xu, Wenqing Shui
Journal of the American Chemical Society (2024-07-13) https://doi.org/g9kwmx
48.
Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar
Tim K Esser, Jan Böhning, Alpcan Önür, Dinesh K Chinthapalli, Lukas Eriksson, Marko Grabarics, Paul Fremdling, Albert Konijnenberg, Alexander Makarov, Aurelien Botman, … Stephan Rauschenbach
Science Advances (2024-02-16) https://doi.org/gth2cp
49.
Cryogenic Soft Landing Improves Structural Preservation of Protein Complexes
Michael S Westphall, Kenneth W Lee, Colin Hemme, Austin Z Salome, Keaton Mertz, Timothy Grant, Joshua J Coon
Analytical Chemistry (2023-09-21) https://doi.org/g9kwmt
50.
Generating cysteine-trypsin cleavage sites with 2-chloroacetamidine capping
Samuel Ofori, Heta S Desai, Flowreen Shikwana, Lisa M Boatner, Emil R Dominguez III, José O Castellón, Keriann M Backus
Chemical Communications (2024) https://doi.org/g9kwmz